
7. Linear Transformations

If V and W are vector spaces, a function T : V →W is a rule that assigns to each vector v in V a uniquely
determined vector T (v) in W . As mentioned in Section 2.2, two functions S : V →W and T : V →W

are equal if S(v) = T (v) for every v in V . A function T : V →W is called a linear transformation if
T (v+ v1) = T (v)+T (v1) for all v, v1 in V and T (rv) = rT (v) for all v in V and all scalars r. T (v) is
called the image of v under T . We have already studied linear transformation T : Rn → Rm and shown
(in Section 2.6) that they are all given by multiplication by a uniquely determined m× n matrix A; that
is T (x) = Ax for all x in Rn. In the case of linear operators R2 → R2, this yields an important way to
describe geometric functions such as rotations about the origin and reflections in a line through the origin.

In the present chapter we will describe linear transformations in general, introduce the kernel and
image of a linear transformation, and prove a useful result (called the dimension theorem) that relates the
dimensions of the kernel and image, and unifies and extends several earlier results. Finally we study the
notion of isomorphic vector spaces, that is, spaces that are identical except for notation, and relate this to
composition of transformations that was introduced in Section 2.3.

7.1 Examples and Elementary Properties

Definition 7.1 Linear Transformations of Vector Spaces

V W

T

v T (v)

If V and W are two vector spaces, a function T : V →W is called
a linear transformation if it satisfies the following axioms.

T1. T (v+v1) = T (v)+T (v1) for all v and v1 in V .
T2. T (rv) = rT (v) for all v in V and r in R.

A linear transformation T : V → V is called a linear operator on V . The situation can be
visualized as in the diagram.

Axiom T1 is just the requirement that T preserves vector addition. It asserts that the result T (v+v1)
of adding v and v1 first and then applying T is the same as applying T first to get T (v) and T (v1) and
then adding. Similarly, axiom T2 means that T preserves scalar multiplication. Note that, even though the
additions in axiom T1 are both denoted by the same symbol +, the addition on the left forming v+v1 is
carried out in V , whereas the addition T (v)+T (v1) is done in W . Similarly, the scalar multiplications rv

and rT (v) in axiom T2 refer to the spaces V and W , respectively.

We have already seen many examples of linear transformations T : Rn→ Rm. In fact, writing vectors
in Rn as columns, Theorem 2.6.2 shows that, for each such T , there is an m× n matrix A such that
T (x) = Ax for every x in Rn. Moreover, the matrix A is given by A =

[
T (e1) T (e2) · · · T (en)

]

where {e1, e2, . . . , en} is the standard basis of Rn. We denote this transformation by TA : Rn → Rm,
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376 Linear Transformations

defined by
TA(x) = Ax for all x in Rn

Example 7.1.1 lists three important linear transformations that will be referred to later. The verification
of axioms T1 and T2 is left to the reader.

Example 7.1.1

If V and W are vector spaces, the following are linear transformations:

Identity operator V →V 1V : V →V where 1V (v) = v for all v in V

Zero transformation V →W 0 : V →W where 0(v) = 0 for all v in V

Scalar operator V →V a : V →V where a(v) = av for all v in V

(Here a is any real number.)

The symbol 0 will be used to denote the zero transformation from V to W for any spaces V and W . It
was also used earlier to denote the zero function [a, b]→ R.

The next example gives two important transformations of matrices. Recall that the trace tr A of an
n×n matrix A is the sum of the entries on the main diagonal.

Example 7.1.2

Show that the transposition and trace are linear transformations. More precisely,

R : Mmn→Mnm where R(A) = AT for all A in Mmn

S : Mmn→ R where S(A) = tr A for all A in Mnn

are both linear transformations.

Solution. Axioms T1 and T2 for transposition are (A+B)T = AT +BT and (rA)T = r(AT ),
respectively (using Theorem 2.1.2). The verifications for the trace are left to the reader.

Example 7.1.3

If a is a scalar, define Ea : Pn→ R by Ea(p) = p(a) for each polynomial p in Pn. Show that Ea is a
linear transformation (called evaluation at a).

Solution. If p and q are polynomials and r is in R, we use the fact that the sum p+q and scalar
product rp are defined as for functions:

(p+q)(x) = p(x)+q(x) and (rp)(x) = rp(x)

for all x. Hence, for all p and q in Pn and all r in R:

Ea(p+q) = (p+q)(a) = p(a)+q(a) = Ea(p)+Ea(q), and

Ea(rp) = (rp)(a) = rp(a) = rEa(p).

Hence Ea is a linear transformation.
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The next example involves some calculus.

Example 7.1.4

Show that the differentiation and integration operations on Pn are linear transformations. More
precisely,

D : Pn→ Pn−1 where D [p(x)] = p′(x) for all p(x) in Pn

I : Pn→ Pn+1 where I [p(x)] =

∫ x

0
p(t)dt for all p(x) in Pn

are linear transformations.

Solution. These restate the following fundamental properties of differentiation and integration.

[p(x)+q(x)]′ = p′(x)+q′(x) and [rp(x)]′ = (rp)′(x)

∫ x
0 [p(t)+q(t)]dt =

∫ x
0 p(t)dt+

∫ x
0 q(t)dt and

∫ x
0 rp(t)dt = r

∫ x
0 p(t)dt

The next theorem collects three useful properties of all linear transformations. They can be described
by saying that, in addition to preserving addition and scalar multiplication (these are the axioms), linear
transformations preserve the zero vector, negatives, and linear combinations.

Theorem 7.1.1

Let T : V →W be a linear transformation.

1. T (0) = 0.

2. T (−v) =−T (v) for all v in V .

3. T (r1v1+ r2v2+ · · ·+ rkvk) = r1T (v1)+ r2T (v2)+ · · ·+ rkT (vk) for all vi in V and all ri in R.

Proof.

1. T (0) = T (0v) = 0T (v) = 0 for any v in V .

2. T (−v) = T [(−1)v] = (−1)T (v) =−T (v) for any v in V .

3. The proof of Theorem 2.6.1 goes through.

The ability to use the last part of Theorem 7.1.1 effectively is vital to obtaining the benefits of linear
transformations. Example 7.1.5 and Theorem 7.1.2 provide illustrations.

Example 7.1.5

Let T : V →W be a linear transformation. If T (v−3v1) = w and T (2v−v1) = w1, find T (v) and
T (v1) in terms of w and w1.
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Solution. The given relations imply that

T (v)−3T (v1) = w

2T (v)−T (v1) = w1

by Theorem 7.1.1. Subtracting twice the first from the second gives T (v1) =
1
5(w1−2w). Then

substitution gives T (v) = 1
5(3w1−w).

The full effect of property (3) in Theorem 7.1.1 is this: If T : V →W is a linear transformation and
T (v1), T (v2), . . . , T (vn) are known, then T (v) can be computed for every vector v in span{v1, v2, . . . , vn}.
In particular, if {v1, v2, . . . , vn} spans V , then T (v) is determined for all v in V by the choice of
T (v1), T (v2), . . . , T (vn). The next theorem states this somewhat differently. As for functions in gen-
eral, two linear transformations T : V →W and S : V →W are called equal (written T = S) if they have
the same action; that is, if T (v) = S(v) for all v in V .

Theorem 7.1.2

Let T : V →W and S : V →W be two linear transformations. Suppose that
V = span{v1, v2, . . . , vn}. If T(vi) = S(vi) for each i, then T = S.

Proof. If v is any vector in V = span{v1, v2, . . . , vn}, write v = a1v1 +a2v2 + · · ·+anvn where each ai

is in R. Since T (vi) = S(vi) for each i, Theorem 7.1.1 gives

T (v) = T (a1v1 +a2v2 + · · ·+anvn)

= a1T (v1)+a2T (v2)+ · · ·+anT (vn)

= a1S(v1)+a2S(v2)+ · · ·+anS(vn)

= S(a1v1 +a2v2 + · · ·+anvn)

= S(v)

Since v was arbitrary in V , this shows that T = S.

Example 7.1.6

Let V = span{v1, . . . , vn}. Let T : V →W be a linear transformation. If T (v1) = · · ·= T (vn) = 0,
show that T = 0, the zero transformation from V to W .

Solution. The zero transformation 0 : V →W is defined by 0(v) = 0 for all v in V (Example 7.1.1),
so T (vi) = 0(vi) holds for each i. Hence T = 0 by Theorem 7.1.2.

Theorem 7.1.2 can be expressed as follows: If we know what a linear transformation T : V →W does
to each vector in a spanning set for V , then we know what T does to every vector in V . If the spanning set
is a basis, we can say much more.
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Theorem 7.1.3

Let V and W be vector spaces and let {b1, b2, . . . , bn} be a basis of V . Given any vectors
w1, w2, . . . , wn in W (they need not be distinct), there exists a unique linear transformation
T : V →W satisfying T (bi) = wi for each i = 1, 2, . . . , n. In fact, the action of T is as follows:
Given v = v1b1 + v2b2 + · · ·+ vnbn in V , vi in R, then

T (v) = T (v1b1 + v2b2 + · · ·+ vnbn) = v1w1 + v2w2 + · · ·+ vnwn.

Proof. If a transformation T does exist with T (bi)=wi for each i, and if S is any other such transformation,
then T (bi) = wi = S(bi) holds for each i, so S = T by Theorem 7.1.2. Hence T is unique if it exists, and
it remains to show that there really is such a linear transformation. Given v in V , we must specify T (v) in
W . Because {b1, . . . , bn} is a basis of V , we have v = v1b1 + · · ·+ vnbn, where v1, . . . , vn are uniquely

determined by v (this is Theorem 6.3.1). Hence we may define T : V →W by

T (v) = T (v1b1 + v2b2 + · · ·+ vnbn) = v1w1 + v2w2 + · · ·+ vnwn

for all v = v1b1 + · · ·+ vnbn in V . This satisfies T (bi) = wi for each i; the verification that T is linear is
left to the reader.

This theorem shows that linear transformations can be defined almost at will: Simply specify where
the basis vectors go, and the rest of the action is dictated by the linearity. Moreover, Theorem 7.1.2 shows
that deciding whether two linear transformations are equal comes down to determining whether they have
the same effect on the basis vectors. So, given a basis {b1, . . . , bn} of a vector space V , there is a different
linear transformation V →W for every ordered selection w1, w2, . . . , wn of vectors in W (not necessarily
distinct).

Example 7.1.7

Find a linear transformation T : P2→M22 such that

T (1+ x) =

[
1 0
0 0

]
, T (x+ x2) =

[
0 1
1 0

]
, and T (1+ x2) =

[
0 0
0 1

]
.

Solution. The set {1+x, x+x2, 1+x2} is a basis of P2, so every vector p = a+bx+cx2 in P2 is a
linear combination of these vectors. In fact

p(x) = 1
2(a+b− c)(1+ x)+ 1

2(−a+b+ c)(x+ x2)+ 1
2(a−b+ c)(1+ x2)

Hence Theorem 7.1.3 gives

T [p(x)] = 1
2(a+b− c)

[
1 0
0 0

]
+ 1

2(−a+b+ c)

[
0 1
1 0

]
+ 1

2(a−b+ c)

[
0 0
0 1

]

= 1
2

[
a+b− c −a+b+ c

−a+b+ c a−b+ c

]
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Exercises for 7.1

Exercise 7.1.1 Show that each of the following func-
tions is a linear transformation.

a. T : R2→ R2; T (x, y) = (x, −y) (reflection in the
x axis)

b. T : R3→R3; T (x, y, z) = (x, y, −z) (reflection in
the x-y plane)

c. T : C→ C; T (z) = z (conjugation)

d. T : Mmn →Mkl; T (A) = PAQ, P a k×m matrix,
Q an n× l matrix, both fixed

e. T : Mnn→Mnn; T (A) = AT +A

f. T : Pn→ R; T [p(x)] = p(0)

g. T : Pn→ R; T (r0 + r1x+ · · ·+ rnxn) = rn

h. T : Rn→ R; T (x) = x · z, z a fixed vector in Rn

i. T : Pn→ Pn; T [p(x)] = p(x+1)

j. T : Rn → V ; T (r1, · · · , rn) = r1e1 + · · ·+ rnen

where {e1, . . . , en} is a fixed basis of V

k. T : V → R; T (r1e1 + · · · + rnen) = r1, where
{e1, . . . , en} is a fixed basis of V

Exercise 7.1.2 In each case, show that T is not a linear
transformation.

a. T : Mnn→ R; T (A) = det A

b. T : Mnm→ R; T (A) = rank A

c. T : R→ R; T (x) = x2

d. T : V → V ; T (v) = v+ u where u 6= 0 is a fixed
vector in V (T is called the translation by u)

Exercise 7.1.3 In each case, assume that T is a linear
transformation.

a. If T : V → R and T (v1) = 1, T (v2) = −1, find
T (3v1−5v2).

b. If T : V → R and T (v1) = 2, T (v2) = −3, find
T (3v1 +2v2).

c. If T : R2→ R2 and T

[
1
3

]
=

[
1
1

]
,

T

[
1
1

]
=

[
0
1

]
, find T

[
−1

3

]
.

d. If T : R2→ R2 and T

[
1
−1

]
=

[
0
1

]
,

T

[
1
1

]
=

[
1
0

]
, find T

[
1
−7

]
.

e. If T : P2 → P2 and T (x+ 1) = x, T (x− 1) = 1,
T (x2) = 0, find T (2+3x− x2).

f. If T : P2→ R and T (x+2) = 1, T (1) = 5,
T (x2 + x) = 0, find T (2− x+3x2).

Exercise 7.1.4 In each case, find a linear transformation
with the given properties and compute T (v).

a. T : R2→ R3; T (1, 2) = (1, 0, 1),
T (−1, 0) = (0, 1, 1); v = (2, 1)

b. T : R2→ R3; T (2, −1) = (1, −1, 1),
T (1, 1) = (0, 1, 0); v = (−1, 2)

c. T : P2→ P3; T (x2) = x3, T (x+1) = 0,
T (x−1) = x; v = x2 + x+1

d. T : M22→R; T

[
1 0
0 0

]
= 3, T

[
0 1
1 0

]
=−1,

T

[
1 0
1 0

]
= 0 = T

[
0 0
0 1

]
; v =

[
a b

c d

]

Exercise 7.1.5 If T : V → V is a linear transformation,
find T (v) and T (w) if:

a. T (v+w) = v−2w and T (2v−w) = 2v

b. T (v+2w) = 3v−w and T (v−w) = 2v−4w

Exercise 7.1.6 If T : V →W is a linear transformation,
show that T (v− v1) = T (v)− T (v1) for all v and v1 in
V .

Exercise 7.1.7 Let {e1, e2} be the standard basis of R2.
Is it possible to have a linear transformation T such that
T (e1) lies in R while T (e2) lies in R2? Explain your an-
swer.
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Exercise 7.1.8 Let {v1, . . . , vn} be a basis of V and let
T : V →V be a linear transformation.

a. If T (vi) = vi for each i, show that T = 1V .

b. If T (vi) =−vi for each i, show that T =−1 is the
scalar operator (see Example 7.1.1).

Exercise 7.1.9 If A is an m×n matrix, let Ck(A) denote
column k of A. Show that Ck : Mmn → Rm is a linear
transformation for each k = 1, . . . , n.

Exercise 7.1.10 Let {e1, . . . , en} be a basis of Rn.
Given k, 1≤ k ≤ n, define Pk : Rn→ Rn by
Pk(r1e1 + · · ·+ rnen) = rkek. Show that Pk a linear trans-
formation for each k.

Exercise 7.1.11 Let S : V →W and T : V →W be linear
transformations. Given a in R, define functions
(S + T ) : V →W and (aT ) : V →W by (S + T )(v) =
S(v)+ T (v) and (aT )(v) = aT (v) for all v in V . Show
that S+T and aT are linear transformations.

Exercise 7.1.12 Describe all linear transformations
T : R→V .

Exercise 7.1.13 Let V and W be vector spaces, let V

be finite dimensional, and let v 6= 0 in V . Given any
w in W , show that there exists a linear transformation
T : V →W with T (v) = w. [Hint: Theorem 6.4.1 and
Theorem 7.1.3.]

Exercise 7.1.14 Given y in Rn, define Sy : Rn→ R by
Sy(x) = x · y for all x in Rn (where · is the dot product
introduced in Section 5.3).

a. Show that Sy : Rn→ R is a linear transformation
for any y in Rn.

b. Show that every linear transformation T : Rn→R
arises in this way; that is, T = Sy for some y in Rn.
[Hint: If {e1, . . . , en} is the standard basis of Rn,
write Sy(ei) = yi for each i. Use Theorem 7.1.1.]

Exercise 7.1.15 Let T : V →W be a linear transforma-
tion.

a. If U is a subspace of V , show that
T (U)= {T (u) | u in U} is a subspace of W (called
the image of U under T ).

b. If P is a subspace of W , show that
{v in V | T (v) in P} is a subspace of V (called the
preimage of P under T ).

Exercise 7.1.16 Show that differentiation is the only lin-
ear transformation Pn→ Pn that satisfies T (xk) = kxk−1

for each k = 0, 1, 2, . . . , n.

Exercise 7.1.17 Let T : V →W be a linear transforma-
tion and let v1, . . . , vn denote vectors in V .

a. If {T (v1), . . . , T (vn)} is linearly independent,
show that {v1, . . . , vn} is also independent.

b. Find T : R2→ R2 for which the converse of part
(a) is false.

Exercise 7.1.18 Suppose T : V →V is a linear operator
with the property that T [T (v)] = v for all v in V . (For
example, transposition in Mnn or conjugation in C.) If
v 6= 0 in V , show that {v, T (v)} is linearly independent
if and only if T (v) 6= v and T (v) 6=−v.

Exercise 7.1.19 If a and b are real numbers, define
Ta, b : C→C by Ta, b(r+ si) = ra+ sbi for all r+ si in C.

a. Show that Ta, b is linear and Ta, b(z) = Ta, b(z) for
all z in C. (Here z denotes the conjugate of z.)

b. If T : C→ C is linear and T (z) = T (z) for all z in
C, show that T = Ta, b for some real a and b.

Exercise 7.1.20 Show that the following conditions are
equivalent for a linear transformation T : M22→M22.

1. tr [T (A)] = tr A for all A in M22.

2. T

[
r11 r12

r21 r22

]
= r11B11 + r12B12 + r21B21 +

r22B22 for matrices Bi j such that
tr B11 = 1 = tr B22 and tr B12 = 0 = tr B21.

Exercise 7.1.21 Given a in R, consider the evaluation

map Ea : Pn→ R defined in Example 7.1.3.

a. Show that Ea is a linear transformation satisfy-
ing the additional condition that Ea(x

k) = [Ea(x)]
k

holds for all k = 0, 1, 2, . . . . [Note: x0 = 1.]

b. If T : Pn→ R is a linear transformation satisfying
T (xk) = [T (x)]k for all k = 0, 1, 2, . . . , show that
T = Ea for some a in R.
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Exercise 7.1.22 If T : Mnn → R is any linear transfor-
mation satisfying T (AB)= T (BA) for all A and B in Mnn,
show that there exists a number k such that T (A) = k tr A

for all A. (See Lemma 5.5.1.) [Hint: Let Ei j denote the
n× n matrix with 1 in the (i, j) position and zeros else-
where.

Show that EikEl j =

{
0 if k 6= l

Ei j if k = l
. Use this to

show that T (Ei j) = 0 if i 6= j and
T (E11) = T (E22) = · · · = T (Enn). Put k = T (E11) and
use the fact that {Ei j | 1≤ i, j ≤ n} is a basis of Mnn.]

Exercise 7.1.23 Let T : C→ C be a linear transforma-
tion of the real vector space C and assume that T (a) = a

for every real number a. Show that the following are
equivalent:

a. T (zw) = T (z)T (w) for all z and w in C.

b. Either T = 1C or T (z) = z for each z in C (where
z denotes the conjugate).

7.2 Kernel and Image of a Linear Transformation

This section is devoted to two important subspaces associated with a linear transformation T : V →W .

Definition 7.2 Kernel and Image of a Linear Transformation

The kernel of T (denoted ker T ) and the image of T (denoted im T or T (V )) are defined by

ker T = {v in V | T (v) = 0}
im T = {T (v) | v in V}= T (V )

ker T

T

V

W
0

im TV W
T

The kernel of T is often called the nullspace of T because it consists of all
vectors v in V satisfying the condition that T (v) = 0. The image of T is
often called the range of T and consists of all vectors w in W of the form

w = T (v) for some v in V . These subspaces are depicted in the diagrams.

Example 7.2.1

Let TA : Rn→ Rm be the linear transformation induced by the
m×n matrix A, that is TA(x) = Ax for all columns x in Rn. Then

ker TA = {x | Ax = 0}= null A and

im TA = {Ax | x in Rn}= im A

Hence the following theorem extends Example 5.1.2.


